Roots vs Zeroes
Тэгшитгэлийн язгуур нь тэгшитгэл хангагдсан утгыг хэлнэ. Олон гишүүнт тэгшитгэл нь олон гишүүнтийн зэргээс хамааран нэг буюу хэд хэдэн үндэстэй байж болно; Эдгээр үндэс нь бодит эсвэл нарийн төвөгтэй байж болно. Бусад хэлбэрийн тэгшитгэлд үндэс нь утга эсвэл функц байж болно. “Тэг” гэдэг нь тэгшитгэлийн үндэс гэж нэрлэдэг өөр нэг нэр томъёо юм.
f (x) хэлбэрийн функцийн хувьд=0 утга x1, x2, x3, ………xn нь f (x) тэгшитгэл алга болох утгууд юм. x1, x2, x3, ………xn, тэгшитгэлийн зүүн тал нь тэг болж үнэлэгддэг ба x1, x2, x3, ………xn-г тэг гэж нэрлэдэг.
F(x)=x3+ x2– 3x – ex функцийн графикийг доор үзүүлэв.
Тэгшитгэлийн үндэс f(x)=x3+ x2– 3x – ex=0 нь A, B, C, D цэгүүдийн x утгууд. Эдгээр цэгүүдэд функцийн утга тэг болно; тиймээс үндсийг тэг гэж нэрлэдэг.